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ABSTRACT

This report documents research results on distributed tracking by a distri-
buted sensor network (DSN). A DSN is made up of a set of nodes which can com-
municate to each other via a communication network. Each DSN node contains a
processor collecting data from some sensors. The processor performs tracking
functions using the local sensor data and communicates the processing results to
other nodes according to some communication strategy. The receiving node then
integrates or fuses the information from other nodes with its local information to
arrive at a better estimate. Compared with a centralized tracking system, a DSN
has advantages such as increased reliability, less communication, local use of pro-
cessing results, etc.

Under previous DSN contracts, a general theory for distributed tracking
based on the multiple-hypothesis approach had been developed for difficult
environments involving many targets, high false alarm rates, poor detection condi-
tions, etc. The objective of current project was to apply this theory to the track-
ing of air targets by a network of acoustic sensors.

Because of acoustic sensor characteristics such as large propagation delay
relative to target speed, azimuth only measurements and poor sensor resolution,
the general algorithm had to be modified. In the modified system, tracks are
classified into local or global according to the target state distribution. Local
tracks have azimuths and sound pressures (and rates) as states and are formed
from a single node before any communication. Global tracks have positions and
velocities as states and are initiated when two nodes communicate. The algorithm
also accounts for merged measurements from targets which are close to each other.
The information distribution strategy is adaptive and communicates only when
the information will be useful to another node.

The algorithms have been implemented on a Symbolics LISP Machine.
Simulations have been performed using synthetic data for scenarios involving
different target and sensor configurations, as well as pre-recorded real data. The
algorithms have been found to perform satisfactorily except for targets that are
too close together to be resolved by the sensors. The feasibility of performing dis-
tributed situation assessment by a network of autonomous but cooperating agents
was thus demonstrated.

An appendix contains the results of investigating tracking from a communi-
cation or information-theoretic view point. This work was performed by Qual-
comm, Inc. under a subcontract.




NOTE TO READER

This document is the Advanced Decision System (ADS) Final Technical
report on the Distributed Tracking in Distributed Sensor Networks. This volume
contains the results of efforts undertaken by Qualcomm, Inc. working as subcon-
tractor to ADS on the effort. Qualcomm’s Final Report entitled, ‘‘Distributed
Sensor Program,” is attached in its entirety as Appendix C entitled, ‘“Tracking
from Communication and Information Theoretic View Point.”
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1. INTRODUCTION AND SUMMARY

This technical report describes the results of research performed under the
contract entitled *‘Distributed Tracking in Distributed Sensor Networks”. The
major part of the research was performed at Advanced Decision Systems (ADS)
and dealt with the distributed processing of acoustic sensor data for tracking air
targets in a distributed sensor network (DSN). Another part of the research, con-
cerned with the formulation of the tracking problem from a communication
theorist’s point of view, was performed by Qualcomm, Inc. under a subcontract.

1.1 GENERAL DSN APPROACH

A general DSN has the structure shown in Figure 1-1. There is a system of
distributed sensor/processor nodes. Each node may have one or more sensor
types, and the sensors from different nodes may-have overlapping coverage. The
sensors collect data from the environment and pass them on to the processors
(processing nodes). The processing nodes process the sensor data and communi-
cate with the other nodes through the communication network to obtain an
assessment of the state of the world. It is generally assumed that no single node
possesses complete information, and each node may have a different world model.
In general, the processing nodes can also control the sensors to improve the perfor-
mance of the overall system. '

A DSN can be used for many applications. In our past and current work,
we have been particularly interested in DSNs used for the tracking and
classification of multiple targets. The target environment is assumed to be dense,
so that determining the origins of the measurements in a particular sensor report
is not obvious. The problem is further complicated by the presence of both false
alarms and missing target reports. In such a network, tracking and classification
is highly dependent on identifying the correct data association. Since the nodes in
general have access to different information, communication among the nodes can
improve the performance of the system. In our work [1, 2, 3] thus far, we have
developed distributed processing systems for tracking and classifying multiple tar-
gets under general assumptions on target and sensor models and communication
patterns.
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A multiple hypothesis approach has been used to solve the general problem
of distributed target tracking and classification. FEach node in the DSN is
assumed to have the structure shown in Figure 1-2. It contains the following four
modules.

1.1.1 Generalized Tracker/Classifier

This module is responsible for processing the local data before any commun-
ication with the other nodes takes place. Since the objective of the system under
consideration is the tracking and classification of multiple targets, this module is a
multitarget tracker. In the previous projects, we have developed a general theory
for multitarget tracking which is implemented in the form of the Generalized
Tracker/ Classifier (GTC). The GTC has the structure shown in Figure 1-3 and
itself consists of four modules. The hypothesis formation module forms multiple
hypotheses from the sensor data, each consisting of a collection of tracks to
explain the origins of the measurements in each data set. These hypotheses are
then evaluated by the hypothesis evaluation module with respect to their probabil-
ities of being true. The filtering and parameter estimation module generates state
estimates and classifications for each track. It is essential for hypothesis evalua-
tion and can thus be viewed as a submodule. To stay within the computational
constraints of each node, the hypotheses are pruned, combined, clustered, etc.
This takes place in the hypothests management module. The result of this process-
ing is a set of hypotheses, and their probabilities, a collection of tracks
corresponding to possible targets and the state distributions of these tracks.
These quantities together constitute the information state for multitarget track-
ing.

1.1.2 Information Fusion

This module combines the local information with information obtained from
the other nodes to obtain a new situation assessment. The information from the
local nodes consists ofs the information described above. The information from
other nodes is also similar. Information fusion then consists of the following steps
(see Figure 1-4):

1-3
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1. Hypothesis Formation - Given a set of hypotheses from other nodes, this
submodule generates new global hypotheses. Tracks from the hypotheses
of different nodes are associated in all possible ways, according to
whether they correspond to the same or different targets.

2. Hypothesis Evaluation - Fach of the hypotheses formed above is then
evaluated with respect to its probability of being true. The statistics of
the tracks from different hypotheses are used in this evaluation. For
example, if two tracks are widely apart in their position or velocity dis-
tributions, they are more likely to have come from different targets than
the same target.

3. Hypothests Management - This is again needed to make computation
feasible given the available resources.

1.1.3 Information Distribution

This module decides what information is to be transmitted, who gets the
information, and when it should be communicated. It thus specifies the informa-
tion available to each node at any time, i.e., the information structure of the sys-
tem. Information distribution can be fixed a priori for simple systems, or it can
be highly adaptive to the information needs in the system.

1.1.4 Resource allocation

This module allocates the resources under the control of the processing node
to maintain or improve the performance of the system. Some typical resources
include sensor resources and processing resources. Both resource allocation and
information distribution can affect the information available in the network.
Thus their activities should be coordinated.
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1.2 PROJECT GOALS

As part of the DARPA DSN program, M.LT. Lincoln Lab. performed
research on the tracking of low flying aircraft using acoustic sensors. A DSN
testbed was developed and used to test and demonstrate DSN techpiques and
technology. Their efforts concentrated on the practical aspects of creating and
demonstrating the testbed. ADS’ focus was on the theoretical development of
algorithms for difficult environments involving many targets, high false alarm
rates, poor detection conditions, etc. The goal of this project was to adapt the
multiple-hypothesis approach of distributed tracking to the acoustic sensor
scenario used by Lincoln Lab. An additional goal was to examine tracking from a
communication theorist’s perspective. Specifically, we have the following objec-
tives:

® Designing the functional architecture for each node in the DSN

® Designing and implementing a simulation environment for the Lincoln
Laboratory testbed

e Developing algorithms for tracking multiple targets using acoustic sensors
in a DSN

e Implementing the algorithms in a simulated DSN

e Testing, evaluating, and demonstrating the algorithms using synthetic or
pre-recorded real data

Although the general methodology of Section 1.1 was in theory applicable to
the acoustic tracking problem, the specific acoustic tracking scenario raised techni-
cal issues which had to be addressed before algorithms could be developed to per-
form satisfactorily. Some of these issues are:

1-8




e Azimuth-only measurements. From a single node, the target location is
not observable from the azimuth measurements. From a pair of nodes,
however, a target becomes observable. An important question is thus the
types of processing to be performed locally by one node and jointly by a
pair of nodes. One possibility is to use different representations such as
azimuth tracks for local processing and position tracks after fusion.
Another possibility is to adopt a single representation.

e Propagation delay. Acoustic signals generated by a target do not reach a
node instantaneously. Since the target speed is substantial compared to
the speed of sound in the air, the delay has to be considered explicitly in
any information processing. For example, the true bearing of a target at
a node can be quite different from its apparent bearing at the node.

e Poor sensor resolution. Due to the poor sensor resolution (20 degrees
separation needed before two targets can be resolved), two targets which
are close together may be detected as a single target. The general algo-
rithm developed on previous contracts largely ignored this possibility.
New techniques had to be developed to handle this situation.

® Range dependent detection. Since target detection depends on the range,
and range affects the sound pressure received at a node, some useful infor-
mation may be present in the sound pressure. On the other hand, the
acoustic propagation characteristics in air may be too complicated and
unreliable. Whether the intensity information can be exploited or not had
to be investigated.

1.3 PROJECT ACCOMPLISHMENTS

In this research, the distributed multitarget tracking approach developed in
the last two DSN projects [1, 2, 3] was applied to acoustic tracking. The func-
tional architecture for each node in the DSN remains the same. Each node con-
tains the same modules of local processing; information fusion, information distri-
bution, and possibly resource allocation.
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An algorith:n for tracking multiple air targets in a DSN of acoustic sensors
was developed. The algorithm was based on a general multiple hypothesis
approach to distributed multitarget tracking. Several modifications had to be
made to accommodate the special characteristics of acoustic tracking discussed
before. Since each sensor generates azimuths only, each node has two types of
tracks, local tracks that are initiated locally and global tracks that are initiated
from two cooperating nodes. Unresolved measurements from two or more targets
due to poor sensor resolution was handled using a model for merging measure-
ments. The model uses the sound pressure to assist in resolving targets.

Propagation delay implies that ordinary triangulation can not be used to
initiate a global track (with location) from local tracks (with only azimuths) from
two nodes. An algorithm that used both acoustic azimuths and azimuth rates
was developed to estimate the target position and velocity. The communication
among nodes is based on an adaptive strategy that only provides the recipient
with useful information.

A simulation environment was developed on a Symbolics LISP machine for
testing, evaluation, and demonstration of the algorithm. The environment
includes a data generator that uses the same sensor models provided by Linccln
Laboratory. System architectures with different sensor numbers and geometries
can be simulated. The communication pattern between the nodes can also be
specified. In addition, pre-recorded real data can be read from a file and used to
drive the processing algorithms. Graphical displays are provided to display the
tracks for the different nodes as well as the intermediate results in the processing.
Statistics can be collected during a run for performance cvaluation.

The algorithm was implemented in the ADS simulation environment.
About 20 different scenarios ranging from one to three targets and three to seven
sensors were simulated. Both maneuvering and non-maneuvering targets were
considered. The simulation results indicated that cooperation between nodes is
essential but reasonable performance can be accomplished without continuous
communication. Monte Carlo simulations were also performed for some scenarios.
It was found that sensor resolution has significant impact on tracking perfor-
mance, both in tracking accuracy and in data association performance. Limited
real data werc also obtained from Lincoln Laboratory to test the algorithms.
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These results demonstrated that the distributed tracking approach
developed by ADS in the DSN projects can be applied to a complicated sensor sys-
temn consisting of acoustic sensors. Performance enhancements can probably be
obtained if other types of sensors (e.g., radars, electro-optical) are available. The
general nature of the basic algorithm allows the incorporation of these new sensors
without much difficulty. On the other hand, the communication strategies can be
improved to include requests for help, etc.

1.4 REPORT ORGANIZATION

The rest of this report is organized as follows. Section 2 describes the gen-
eral approach to distributed tracking in a DSN. This is mostly a review of the
work done in earlier DSN projects. The basic structure will be used for acoustic
sensors but the algorithms will have to be modified to accommodate the special
features of acoustic tracking such as angle-only measurements, propagation
delays, poor resolution, etc.

Section 3 describes the acoustic tracking scenario to be considered and the
mathematical models used. The models reflect the special characteristics of acous-
tic tracking such as propagation delay and poor sensor resolution.

In Section 4, the local data processing algorithm adapted for acoustic track-
ing is presented in detail. An upgrade of the algorithm using multiple models,
which significantly improves the local tracking performance, is also described.

Section 5 presents the information fusion and distribution modules of the
system. Detailed algorithms for track-to-track fusion and likelihoods calculation
are described. The strategies used for communication are also discussed.

Experimental results using simulated and real data are presented in Section
6. Evaluations of the performance by means of simulations and Monte-Carlo runs
are also discussed.

Section 7 contains the conclusions and suggestions for future research.
Appendices A and B present detailed derivations of some equations, while Appen-
dix C is the report by Qualcomm, Inc. on tracking from a communication point of
view.
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2. DISTRIBUTED MULTITARGET TRACKING

This section contains a review of our approach to distributed multitarget
tracking. Section 2.1 presents the architecture for each node in the DSN. Section
2.2 describes the local hypothesis processing functions. Section 2.3 describes
hypothesis processing in information fusion. An approach to construct the infor-
mation graph used in information fusion is presented in Section 2.4.

2.1 NODAL STRUCTURE

The ADS approach treats the DSN as a distributed hypothesis processing
system. The overall goal of the system is to form hypotheses on the measurement
data so that the targets can be tracked. Each node uses the local sensor data to
form local hypotheses. When these are communicated to other nodes, new
hypotheses are formed at the receiving nodes. Figure 2-1 shows the the functional
structure of each node and results from integrating Figures 1-2 to 1-4. Each node
contains a local data base of hypotheses which is updated whenever new informa-
tion arrives. This can happen in either one of two ways: data arriving from the
local sensors or messages arriving from the other nodes. The two corresponding
updating functions are then local information processing and information fusion.

2.1.1 Local tracking data

Each node stores information about the targets in the form of hypotheses.
These are formed from sensor reports received directly from local sensors or
indirectly through other nodes. Each hypothesis is a possible explanation of the
origins of the measurements in terms of how they are associated to the targets.
Since multinle associations of the measurements to targets are possible, at any
particular time a node maintains a set of hypotheses corresponding to the multi-
ple explanations.

The relationship of a hypothesis to the measurements in the sensor reports
is shown in Figure 2-2. Each hypothesis consists of tracks corresponding to the
targets detected by the node. Each track consists of measurement indices from
the same target. If the sensor resolution is such that a target cannot give rise to
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two or measurements in the same sensor report, then this constraint would be
used in defining a track. For acoustic sensors, this assumption that a target does

not generate two or more measurements is generally true.

Many tracks can be formed from the measurement indices in the same sen-
sor reports. However, not all of them may belong to the same hypothesis. A
hypothesis is a collection of mutually consistent tracks. Consistency may depend
on the sensor characteristics. If the sensor resolution is such that there are no
merged measurements, then a possible hypothesis cannot have overlapping tracks.
However, in the case of acoustic sensors, merged measurements are quite possible

- DATA
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e SENSOR
DATA

SENSOR SENSOR
REPORT 1 REPORT 2

Figure 2-2: Definition of Hypothesis
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when the target azimuths are close together. 1 any hypothesis, the measurements
not belonging to any tracks are considered to be false alarms. A hypothesis also
has associated with it a probability. Since each hypothesis set consists of mutu-
ally exclusive and collectively exhaustive explanations, the sum of the probabilities
over the set would be one.

Once a track is specified, the measurements for the hypothesized target
represented by the track are known. From these measurements, the state of the
hypothesized targets can be estimated. For the targets of interest in the current
research, the state consists of the position and velocity in an appropriate coordi-
nate system. Since the measurements may contain error, the state uncertainty in
terms of means and covariances should also be specified. In some cases, the
classification of the target may also be included as a discrete state.

In a distributed framework, it is necessary to maintain the hypothesis sets
formed or received at some earlier times in addition to the most current
hypothesis set. The precedence relationship among the hypotheses and the tracks
in the different sets is also needed. The hypothesis structure thus consists of mul-
tiple hypotheses at different times organized in the form of a directed graph. Fig-
ure 2-3 contains an example for periodic broadcast communication where the
hypothesis set formed after the last broadcast time is also retained. The pre-
cedence relationship between the hypotheses is shown by means of links between
the hypotheses. Although not shown, there should be similar links between the
tracks. In general, the dimension of the hypothesis structure depends on the com-
munication between the nodes.

2.1.2 Processing structure

The hypothesis structure presented above represents the information state
for each node. This information state is updated whenever new information is
received in the form of sensor data or messages from other nodes. Functionally,
the node contains subsystems or modules responsible for local information process-
ing, information fusionl and information distribution. The local information pro-
cessing module updates the hypothesis structure with the local sensor data. The
information fusion module updates the hypothesis structure with incoming mes-
sages from other nodes. The information distribution module is responsible for
communication with other nodes.
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Figure 2-3: Example of Hypothesis Structure

The local information processing and information fusion modules contain
two levels as in Figure 2-1. The first level is concerned with hypothesis processing
functions such as their formation, evaluation and management. Of these,
hypothesis evaluation requires information at the track level. There are thus
additional track-level calculations to be performed in each module. For local
information processing, they involve calculating the track-to-measurement associa-
tion likelilhoods and track state distributions. For information fusion, the
corresponding calculations would involve the track-to-track association likelihoods
and track state distributions. In general the hypothesis processing functions are
almost the same for many applications. They will be considered in the following




subsections for both local informatior. processing and information fusion. The
track-level calculations, on the other hand, are dependent on the particular target
and sensor scenarios. They will be discussed in details, specifically for acoustic
tracking, in Sections 4 and 5.

2.2 LOCAL HYPOTHESIS PROCESSING

The local information processing module uses data (acoustic azimuth meas-
urements) from the local sensors to generate new hypotheses from the old
hypotheses. It performs the following functions:

o Hypothesis formation
e Hypothesis evaluation

e Hypothesis management

Of these functions, hypothesis formation and management are at the hypothesis
level while hypothesis evaluation also requires inputs from track-level calculations.
The hypothesis processing functions will be described in this section while the
track-level calculations will be described in Section 4.

2.2.1 Hypothesis formation

This is the first step in local hypothesis processing. New hypotheses are
formed by associating the measurements in each sensor report with the tracks in
the current hypothesis set. Multiple associations are in general possible for each
hypothesis. The following are the different ways in which measurements and
tracks can be associated:
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e A mecasurement y; may be associated with an existing track r, in the

H
current hypothesis

® A measurement y;, may be associated with a new track (i.e., a target
which has not been detected up to now)

® A measurement y; may be associated with no track at all (i.e., it may
come from a false alarm)

e A track 7; may not be associated with any measurement at all (i.e., it may
be missed in the current sensor report)

Not all of these associations may be meaningful and some initial screening is
used to reduce the possible associations. For example, if a measurement and a
track are too far apart in location, then there-should not be any association.
From these possible associations, new tracks are formed by appending the meas-
urements to the old tracks. From the new tracks, new hypotheses are formed by
imposing suitable constraints among the tracks in the same hypothesis. If the
sensor resolution is such that there are no merged measurements, then there
should be no overlap in the tracks. New hypotheses are generated from tracks
satisfying these constraints.

There are several ways to perform the actual hypothesis formation. The
simplest is by a recursive list method. Consider the example in Table 2-1. It
displays the possible associations between measurements (on the x-axis ) from one
sensor report and tracks (on the y-axis) in a hypothesis. The sensor report con-
sists of two measurements: 1 and 2. O represents the absence of a measurement,
or non-detection. There are two existing tracks: 1 and 2. N represents a new
track and F represents false alarms. Thus either one of the measurements can be
new tracks or false alarms. Track 2, however, cannot be associated with measure-
ment 1 since the value of measurement 1 is incompatible with the state of
track 2. The following steps can be used for hypothesis formation:




Table 2-1: Track-Measurement Cross Reference Table

X[ X|X]e
XIOX[X|~
XIXXX]

MmN - Z

1. For each measurement in the table, the column below it gives the list of
possible tracks which can be associated with it. The lists for the two
measurements are:

- measurement 1: (N,1,F)
- measurement 2: (N,1,2,F)

2. By forming all possible combinations between list 1 and 2, with one
track from each list, we obtain twelve possibilities of the form (a,b)
where a is the track associated with measurement 1 and b is the track
associated with measurement 2. Of these, (1,1) is eliminated since 7
track 1 cannot be both associated with measurement 1 and 2 in the
same sensor report. There are thus eleven possible hypotheses.

The eleven hypotheses are displayed in Table 2-2. Figure 2-4 shows the
hypothesis set in the form of a tree. Each branch of a tree represents a possible
hypothesis. The symbol under each measurement denotes the track associated
with the measurement in that particular hypothesis. In this approach, each meas-
urement is associated To at most one track. It thus guarantees that there are no
merged measurements. However, some combinations will involve split measure-
ments and have to be eliminated.




Table 2-2: Hypothesis Set (no merged measurements)

MISSED TRACK 0 2221{1,2{1,22 1{1,2{1,2

TRACK FOR MEASUREMENT 1 111FF F F NN N N

TRACK FOR MEASUREMENT 2 2FN12 F N 12 F N
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Figure 2-4: Hypothesis Tree (no merged measurements)

For the scenario in the current research, however, the acoustic sensor resolu-
tion is such that two or more detected targets may generate only one measure-
ment. In this case the hypothesis expansion scheme would have to be modified.
Specifically, each measurement can be associated with two tracks. However, the
no track splitting assumption should still be valid, i.e., the same track should not
contain more than one measurement in the same sensor report. The recursive list
technique used above needs to be modified to allow merged measurements. But
first of all, the track-to-measurement correlation (TMCR) table needs to be
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modified according to the merged measurement model.

For the same example as in Table 2-1, suppose measurement 2 could be a
merged measurement from the two targets. Then the modified (Extended) TMCR
table can be obtained as in Table 2-3. In this table, an extra row hypothesizing
the merging of measurements from tracks 1 and 2 is added. This row contains a
non-zero entry at column 2 which represents the possibility of measurement 2
being the merged measurement according to the model. In this case, the following
steps can be used for hypothesis formation :

1. For the two measurements in the table, the new lists for the possible
tracks are:

- measurement 1: (N,1,F)

- measurement 2: (V,1,2,{1,2},F) -

Table 2-3: Extended Track-Measurement Cross Reference Table

XX[X|e
XIO|IOX|X] -
XIXIXIXX |
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2. By forming all possible combinations between list 1 and 2, with one
track from each list, we obtain fifteen combinations. Of these, (1,1) is
eliminated as before, similarly (1, {1,2}) is also eliminated based on the
same reason. There are thus thirteen possible hypotheses left.

Table 2-4 contains the hypothesis set. Figure 2-5 displays the same hypothesis set
as a tree. Note that in this case more than one track can be associated to the
same measurement.

Note that this approach of hypothesis formation automatically guarantees
that there are no split measurements for existing tracks. Hypotheses with merged
measurements are formed if no additional constraints are imposed. On the other
hand, one can remove the hypotheses with overlapping tracks to obtain the
hypothesis set in Table 2-2.

2.2.2 Hypothesis Evaluation

This module evaluates the probability of each hypothesis being true. A
recursive algorithm has been developed in previous projects [1, 2, 3] for hypothesis
evaluation. Given a hypothesis A which descends from another hypothesis X in
the sense that all the tracks in the current hypothesis are either extensions of the
old tracks or new tracks, the hypothesis evaluation algorithm is given by:

Table 2-4: Hypothesis Set (with merged measurements)

MISSED TRACK 02221 o{1,2{1,212 1 ¢ {1,2{1,2)

TRACK FOR MEASUREMENT 1 111FF F F F NN N N N

TRACK FOR MEASUREMENT 2 2FN12{12) F N 1 2{12 F N
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Figure 2-5: Hypothesis Tree (with merged measurements)
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P(N|Z)=C Y P(N|Z) Lpy JCE L(TY.u(r) ) (2.1)
where 7 is the cumulative data up to the current time, 7 is the cumulative data
up to the previous update time, and C is a normalizing constant. Lp, is the
likelihood of false alarms in the hypothesis. L(?,y,l(,.)) is the likelihood that a
track 7 is associated with the measurement Ya(r) The exact expressions of these
likelihood functions can be found in previous DSN reports.

Note that in addition to the probability of the previous hypothesis, certain
track-to-measurement likelihoods are needed to compute the probability of the
current hypothesis. Specifically, the following likelihoods of associations are
needed:

o Likelthood of a track associated with a measurement
e Likelihood of a track associated with no measurement
® Likelihood of a measurement associated with a new track

o Likelihood of a measurement being a false alarm

In addition to the measurement values and track state values, each of these likeli-
hoods depends on the measurement errors and state estimate errors. They also
depend on the detection probability of the sensor. Note that when all the
hypotheses have to be evaluated, the likelihoods needed can be summarized con-
veniently in a track-to-measurement cross reference table (Table 2-5). On one
dimension of the table are all the tracks 1 to IV,, the new track denoted by 0 and
the false alarm. On the other dimension are the measurements 1 to N, in the
current sensor report. The measurement indexed by 0 corresponds to nondetection.
Each element in the table is a likelihood associating a track (old, new, or false
alarm) to a measurement (or nondetection). These likelihoods have to be provided
by track-level calculations to be discussed in later sections.
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Table 2-5: Track-Measurcment Cross Reference Table

MEASUREMENTS

0 | 2 . . . N,
New Track 0 L Loy, Lg» L LN,
! Ly Ly Ly, © v L\N,
IZxisting * ‘ * ) :
Tracks ) ’ : ) L *
Ny | Lo Ly, Ly, , o Ly N,
Yalse Alarm Ly Lgy _ MO "ﬁ‘.“.’,,

The hvpothesis evaluation algorithm presented above assumes that there are
no merged measurements. When this is not the case, it will be necessary to con-
sider *he likelihood of two or more targets generating the same measurement. The
detailed hypothesis evaluation for merged measurements will be discussed in Sec-
tion 4.

2.2.3 Hypothesis management

The function of the hypothesis management module is to control the
number of hypotheses maintained in the system. The following hypothesis
management techniques have been implemented in the current ADS DSN algo-
rithms:

e Hypothesis pruning: Hypotheses whose probabilities are below a certain
threshold are removed from further consideration. Another alternative is
to retain enough hypotheses so that their cumulative probability is above
a threshold. This is called the adaptive thresholding approach.
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e Hypothesis combining: Similar hypotheses are combined into a single
hypothesis. Similar hypotheses are those which have the same number of

tracks and whose tracks are similar according to some criterion.

e Hypothesis clustering: Groups of measurements and tracks which cannot
be associated can be decomposed into independent clusters. Hypothesis
formation and evaluation can then be performed within each cluster.
This reduces the amount of storage and computation without making any
approximation.

These techniques are used for managing the number of hypotheses in the current
system.

2.3 HYPOTHESIS PROCESSING IN FUSION

The information fusion module takes hypoiheses received from other nodes
and integrates these with the local hypotheses to generate new hypotheses. A
hypothesis from each node consists of target tracks which the node is supposed to
have detected. Fusion produces new hypotheses consisting of detected target
tracks given the local and received information. It is basically a track correlation
process, i.e., determining which tracks from the different nodes correspond to the
same targets. As in local hypothesis processing, there are three separate steps in
information fusion: hypothesis formation, hypothesis evaluation and hypothesis
management. Before considering these topics, the issue of track and hypothesis
fusability will be discussed.

2.3.1 Fusability and information graph

The first step in the fusion process is to form possible track and hypothesis
sets using the local tracks and hypotheses and those received from other nodes.
Certain combination of tracks and hypotheses should not be fused since they are
inherently contradictory. In the example of Figure 2-6, the two tracks 7; and 7,
are two local tracks maintained at two different nodes. They cannot be fused
since the resulting global track would have two different measurements in the
same sensor report 1, thus violating the no split measurement assumption. On
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the other hand, 7, and r; can be fused to yield a global track rU7y. The
interpretation of this global track is that the measurements in both tracks 7, and
r3 come from the same target. Tracks 7, and 7, can also be fused. However, they
do not have to be and in that case the two tracks correspond to two different tar-
gets. The fusability question also needs to be addressed at the hypothesis level.
Each local hypothesis is a possible explanation about the origins of the local meas-
urements. Thus if the local hypotheses are incompatible, they cannot be fused to
obtain a global hypothesis. This is illustrated in Figure 2-7 where each node 1
has two local hypotheses >\‘j, 7=1,2 derived from the two common hypotheses
N, 7=1,2. Since A\' and )? are mutually exclusive, the local hypotheses \? and
Ay are not fusable.

In the examples above, it is easy to determine the fusability of hypotheses
and tracks. When communication becomes more complicated, determination of
fusability becomes more difficult since it is necessary to identify the information
available to the nodes in the network at various times and how the information of
one node at one time is related to that of another node at a different time. For
example, whenever two nodes communicate some common information is shared
between the nodes. The existence of this shared information would affect
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P - e~ — e —

Ve

{ Xx

AN
~

-
/
/ /
( X
\
~ e — — — —— "
Sensor Report 3 Sensor Report 4

Figure 2-6: Fusability of Tracks
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Figure 2-7: Fusability of Hypotheses

fusability since hypotheses which have different predecessors in this common in or-
mation are not fusable.

The information graph can be used to trace the histories of the communica-
tion conveniently. Each vertex in the graph represents an event when the infor-
mation in the DSN changes. These events are: sensor observation, sensor data
received at a node, transmission of messages by a node and reception of messages
at a node. The arc in the graph represents information flow. Figure 2-8 shows
the information graph for broadcast communication. At a given time all the
nodes communicate to each another so that they all have the same information.
Figure 2-9 shows the information graph for a cyclic communication system. The
system consists of three nodes N={1,2,3} collecting data from the three sensors
S={1,2,3}, respectively at the times ...,tsp,tgp+t4,-.... The nodes transmit to the
other nodes periodically according to the pattern shown in Figure 2-9 at times
.wteritor+it4,.- and the messages are received at the times ...,lcp,tcp +t4,... It
is assumed that tgp <top <tcp.
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2.3.2 Hypothesis formation

Once the information graph is available, The following steps are used in
hypothesis formation:

1. Determining hypothesis fusability. Hypotheses which are inconsistent,
e.g., descending from conflicting hypotheses, cannot be fused. Fusion
amounts to checking the ancestors of the current hypotheses. If they are
processed by a node at any given time, then they should have
nonconflicting ancestors at that particular vertex in the information
graph. In fact it is only necessary to check the most recent common
predecessor set. In the example of Figure 2-9, consider the hypothesis
sets at vertices (t¢7,1) and (t¢r,2) which are fused at the vertex (top,1).
A pair of hypotheses in these sets would be inconsistent if their ancestors
on (ter—2t4,1) or (ter—t4,2) (or predecessors of these vertices) are
different. A necessary condition is -to check their ancestors on
(tcr—2t4,1) or (ter—1t4,2). If they are different, then the hypotheses are
not fusable. Otherwise, we can proceed to the next step.

2. Determining track fusability. For each fusable hypothesis pair, all fus-
able track pairs are identified. A fusable track pair is one which when
traced back does not cause any conflict. Non-fusable tracks are those
which have been hypothesized to come from distinct targets in the past.
In particular, all new tracks created after the nodes last communicated
are fusable. The fusability condition again can be checked as in
hypothesis fusability. However, the condition is now both necessary and
sufficient [7]. A track-to-track fusability table such as Table 2-6 can be
used to represent the fusable tracks. Each nonzero entry corresponds to
a pair of fusable tracks. In Table 2-6, 75, and 7, are a fusable pair and
neither track can be fused with any other track. This implies that they
have been identified to have come from the same target in the past. The
tracks 7y, and 7y, however, are fusable with each other or with the
undetected tracks represented by 7,,. This means that they can be the
same targets or they can be different targets which are not detected by
the other node. In forming the track-to-track fusability table, informa-
tiou about the track states can also be used. For example, if the tracks
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Table 2-6: Track-to-Track Fusability Table

A
T ™ T
Tlo x O X
xl T“ O x O
Tl-_) X O X

To9 and 7, are very far apart, then the two tracks should not be fused
even though they are logically fusable.

3. Hypothesis formation for each fusable hypothesis pair. From the two
hypotheses A\; and X\,, we can thus form the following two hypotheses:

{(r1aUa1), (110UT22), (112UT20)}
{(r11Ugy), (110U722)}

This step can be repeated for other fusable hypothesis pairs.

As a result of these three steps, we have multiple hypotheses, each one correspond-
ing to a different association of the tracks between the nodes. Hypothesis forma-
tion is basically a two-level procedure: the top level considers all possible associa-
tions among the hypotheses, and given each of these the second level considers all
fusable associations among the tracks. Note that the second level is actually very
similar to hypothesis formation at the local level.
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2.3.3 Hypothesis evaluation

The next step in information fusion is to evaluate the probabilities of the
hypotheses formed using the probabilities of the local hypotheses and the local
track state distributions. If the nodes communicated in the past, the local statis-
tics would not be independent. A key problem in hypothesis evaluation is to
identify the common information shared by the nodes and make sure it is not
double counted in generating the global statistics.

The information graph is useful in tracing the shared information in the
hypothesis probabilities and track state distributions. Suppose it is necessary to
compute the conditional probability of the state z at a vertex 7, iu the informa-
tion graph whose immediate predecessors in the graph form the set I. Suppose
the cumulative measurement set for an immediate predecessor ¢ is Z; and Iis the
set of predecessors of I. Since each p(z |Z;) contains some information shared by
other p(z le)’s, this redundant information needs to be identified and removed
in the fusion. It was shown in (7] that the probability of z at the fusion vertex is
given by

p(z1UZ)=c"' ILp(z |Z)0) (2.2)
1e] iel

where I<I is a subset of I, (a(i_)),.—ef is some index tuple such that afi) is a
nonzero integer for each z'_, and C is the normalizing constant. The set I contains
all the information vertices which are relevant to fusion at the vertex iy ofr)
determines whether the information at vertex i should be added (a(;_)=1) or
removed (afi)=—1). In equation (2.2), addition of information appears as multi-
plication by the conditional probability while removal appears as division.

Let Z=U Z; be the cumulative measurement data after fusion has taken

el
place. We need to compute the probability P () |Z) for each hypothesis X formed
from fusion. For the tracking scenario under consideration, the following
hypothesis evaluation algorithm is applicable. Suppose for each 1E&l, the proba-
bility P(» |Z;) for each hypothesis A defined on Z: is known. Then for each

hypothesis X\ defined on Z, the probability of the hypothesis being true is given by

— 1 _‘ (i) r N\
POZ) = et LR 1270 T Lin(Z)zer) (23)
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where C is a normalization constant, (A |er) is the predecessor hypothesis of A
defined on Z: and Z’(T’(Zf)i_ef) is the likelihood of the global track formed by

associating the local tracks. The exact formula of this track-to-track association
likelihood was derived in |{7] and will be discussed again in Section 3.

We note that hypothesis evaluation depends only on the statistics at the
information vertices in the set I. The function « determines whether the informa-
tion at a vertex should be added or subtracted. The hypothesis evaluation for-
mula of (2.3) has a two-level structure. At the higher level, the product of the
local hypothesis probabilities evaluates the probability of associating the given set
of local hypotheses. The next level consists of the likelihoods of associating the
individual tracks. As in local hypothesis evaluation, these track-to-track associa-
tion likelihoods can again be supplied in the form of a table. Section 5 will dis-
cuss the calculation of these likelihoods.

2.3.4 Hypothesis management

Hypothesis management techniques such as those used in the local informa-
tion processing would be needed in information fusion. Examples are pruning,
combining and clustering. Pruning and combining are usually performed within
each cluster.

2.4 CONSTRUCTION OF INFORMATION GRAPH

In Section 2.3, we discussed the information fusion problem. Both
hypothesis formation and hypothesis evaluation requires knowing the information
graph so that fusable hypotheses and tracks can be identified and redundant use
of information in either hypothesis evaluation or track fusion can be avoided.
When the communication schedule is specified a priori, the information graph can
be generated off-line, stored at each node and used in information fusion. When
communication is driven by data or unreliable, the information graph cannot be
generated in advance. Techniques used to construct the information graph on-line
will be discussed in this section.
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2.4.1 Limited range broadcast communication

The nominal communication in the acoustic tracking scenario is limited
range broadcast where each node broadcasts to only a finite number of neighbors
within the broadcast range. Consider the example in Figure 2-10. The system
has six nodes arranged as in the figure and a node can only hear from one which
is connected to it. The information graph depends on the order of their broadcast
and cannot be specified a priori. Suppose they broadcast sequentially in the order
of 1,2,3,4,5,6. The information flow graph is shown in Figure 2-11. When they
broadcast in a different order, such as 1,3,5,2,4,6, the information graph will be
different.

A possible way of generating the information graph dynamically is to attach
a history to each hypothesis set communicated in the system. When fusion
occurs, each DSN node appends the histories of the fused hypotheses to the result-
ing hypothesis set. This results in the transmission of the history of the
hypothesis set together with the hypothesis set. . As an example, after fusion by
node 2 at time t¢,, the resulting hypothesis set has a tag indicating its ancestor
from node 1. After fusion by node 2 at time t,, the hypothesis set would know
that it only has data from nodes 1 and 2. The hypothesis sets maintained by
nodes 1, 5 and 6 just before ¢;, would have the history represented in Figure 2-12.
When node 1 receives the broadcast from node 6, the histories of the local and
incoming hypothesis sets contain the partial information graphs at the two nodes.
This can be used to construct the relevant part of the information graph needed
for information fusion. The common information shared by the two nodes is that
of the vertex (¢3,2). This is the last time the nodes communicated with one

1 2 3

Figure 2-10: Six Node Configuration
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another. Hypothesis and track fusability require checking the ancestors of
hypotheses and tracks at this vertex. Both hypothesis evaluation and track state
fusion would use the probabilities at this vertex. Similarly, node 5 can construct
the relevant part of the information graph by using the partial information
graphs from node 5 and node 6. In this case, the shared information is at the ver-
tex (¢g,5).

Some approximations are needed to make the scheme practical. The history
for each hypothesis set cannot be too long or the communication and memory
resources will be too high. In addition, the reconstruction of the information
graph may be too difficult. Some kind of window needs to be applied to the his-
tory of each hypothesis set to reduce it to a manageable length. In some cases the
finite window will not introduce any error. For example, if all the information
before tg in Figure 2-12 is discarded, node 5 would still be able to identify the
common information vertex (fg,5). On the other hand, node 1 would not be able
to trace the shared information in hypothesis sets from node 1 and node 6. How-
ever, one may argue that any dependence which occurs in the distant past should
not have too much effect on the current processing. These communication issues
will be discussed further in Section 5.

The complexity of the problem is sometimes reduced if each node does not
process all the messages received. For example, if the messages contain informa-
tion about tracks which are not yet in the sensor’s field of view, then they need
not be included in the processing. This simplifies the information graph since a
node which does not use the message is equivalent to onc which does not receive
the message.

2.4.2 Lost messages and communication failures

Since communication is not always reliable, broadcast messages may be lost.
The broadcasting node may not be aware of this if no acknowledgement is pro-
vided in the system. In addition, some nodes in the broadcast range may receive
the message while others may not. Since the effective information graph is
modified, information fusion will be affected. For example, consider figure 2-11.
Suppose node 6 does not receive the broadcast message from node 5 at time tq.
The path from (t4,5) to (¢,0,6) in the information graph is then absent. When
fusion at node 5 occurs at time (¢,,,5), the common information is now (t,,1). If
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this is not recognized, error may be introduced into the processing. This problem,
however, would not arise if the information graph is constructed on-line from the

histories of the communication.
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3. DISTRIBUTED ACOUSTIC SYSTEM AND MODELS

In this section, we describe the distributed acoustic tracking system and the
models used. Section 3.1 presents the overview of the system, and Section 3.2
describes the models.

3.1 SYSTEM DESCRIPTION

Our systemn configuration is based upon the one implemented by Lincoln
Laboratory in their DSN testbed.

The acoustic sensors in the DSN test bed are small microphone arrays. The
front-end signal processing algorithms produce ‘‘measurements’ every two seconds
and they correspond to the average target azimuths over the two second interval.
The algorithms also supply signal-to-noise estimates, which can be used to gen-
erate accuracy values for the azimuth measurements. The sensors produce no tar-
get elevation information.

The detection range for a single target is from a few to a few tens of kilome-
ters, with five kilometers being a good nominal value. The target detection pro-
bability depends upon the signal-to-noise ratio, which for a given signal source
strength depends upon range, topography, background noise, and propagation
conditions. In general, detection probability increases with decreasing range
although this may be violated by quiet zones introduced by topographic features
such as hills.

The number of targets within the detection range which can be simultane-
ously detected and isolated depends on factors such as array aperture, number of
sensors in the array, noise level, signal level, and the azimuth separation of the
targets. Lincoln’s experience is that three to five would be an appropriate
number. Equal power targets with a azimuth separation of less than 20 degrees
may not be resolved.

The false alarm rates may depend on the targets present and the signal pro-
cessing algorithm. In the absence of targets the number of false detections gen-
erated by the sensor and its associated signal processing algorithms is on the order




of three to five for each measurement interval.

The azimuth accuracy of the acoustic arrays is on the order of two degrees.
This can be improved by changing the measurement intervals. A lower limit is
imposed by propagation physics with a reasonable value of about one degree.

The sensors/processors can be deployed in various patterns. Two possible
options are: barrier and area (Figure 3-1). The barrier pattern has the nodes
arranged in a long linear extent and is useful for early warning situations. The
area pattern has nodes in the interior of the DSN and is useful for continuous sur-
veillance over large areas. A general DSN may contain many nodes but the sys-
tem considered in the research has a maximum of six nodes so as to match the
testbed hardware. The six nodes can be arranged in various ways to simulate the
two options.

Important system deployment parameters are the distance between nodes,
sensor detection range and the broadcast communication range. The system may
exhibit different characteristics as a function of these parameters. It is not clear
what kinds of parameters will be optimal. However, the sensor detection range
should be at least equal to the distance between nodes to provide some overlap-
ping coverage. The broadcast range should be at least the distance between nodes
and possibly larger so that information can propagate faster in the system.

The nominal communication between nodes is a limited range unack-
nowledged broadcast. The nominal reception area is a disk with the range as the
radius and the center at the broadcasting node. However, there may be "dead
areas’ within the disk where no reception is possible. These disks may be known
or unknown to the system.

In addition, communication may be unreliable in the sense that messages
could be lost. A message broadcast by one node may be received by some nodes
within the broadcast disk and lost by others. This is equivalent to having failing
communication channels. The broadcasting node may not be aware of the failure.

We are interested in target scenarios ranging from easy to quite difficult. A
local target density of three per node would be considered quite difficult due to the
limited resolution of the sensors. Thus, one, two, and three targets will be con-
sidered in our simulations. The targets may maneuver by changing courses or
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Figure 3-1: DSN Deployment Patterns
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speeds or both. They may pass through the DSN in various ways. The targets
may fly in different configurations. For example, they may fly in different forma-
tions and the formations may cross each other.

3.2 MODELS

The altitudes of targets are assumed to be very low and the targets are
modeled as ohjects moving in the 2-dimensional space. 'i e motion is modeled by
constant velocity or constant acceleration (or if necessa.y constant jerk). A
maneuvering target is modeled by additional white noise excitation to the target
dynamics.

Let a target position viewed from a sensor at time ¢ be z(¢). The sound
wave received at time ¢ by the sensor has originated from the target at time ¢ -9,
where the time delay 0 is determined by

lz(t—&l = c5 . (3.1)

with ¢ being the speed of the sound in the air (See Figure 3-2). Equ. (3.1) has a
unique solution & provided z() is differentiable and [z (¢ J<¢ (subsonic). Eqn. (1)
determines the acoustic azimuth (measured clockwise from the north) ¢ of the tar-
get with respect to the sensor. The measured acoustic azimuth ¢,, contains meas-
urement error as

by =+ w (3.2)

where w is modeled by an independent zero-mean gaussian random variable (r.v.)
whose variance is yet to be specified.

Let the sound pressure at the 1-meter distance from the target be s,. Then
the sound pressure measurement sy, at the sensor is

So

where r is the acoustic range, i.e., r=c§, and G is the sensor gain. To account
for propagation irregularity and other random factors, either additive or
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multiplicative noise should be added to (3.3). The sensor also measures ambient
noise sy. Thus when the measured sound pressure exceeds a given threshold spy,
the sensor generates a measurement y=(ds,s),5y) consisting of the acoustic

azimuth and the signal/noise sound pressure levels.

The azimuth measurement error standard deviation (SD) o, (of w in (3.2))
is determined by

o
oy = T(SNR) (3.4)

where 06 is the sensor resolution (about 20 degrees), SNR=s)/sy, and
[(SNR )=min{max{1,V'SNR },10}. The number of false alarms is modeled as a
Poisson r.v. independent from scan to scan. The delayed azimuth value of a false
alarm is distributed uniformly on [0,27] and the sound pressure value has an
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exponential distribution biased by the threshold value.

. . 1 o

When two acoustic azimuth measurements, (,')]f{ and oj, are close enough,
ie., I(b}{,,-—@fl |<5€5, they are merged into a single measurement, and the merged
acoustic azimuth measurement becomes

Gif = qop + (1-9) iy (3.5)
where
1 if SA} > 5352
7= iy otherwise (3.6)
sA,l[-i—sA}

and sy is the unmerged sound pressure measurement corresponding to @j,. The
merged sound pressure measurement becomes

Sy if sy > 5spg

S = (3.7)

1 otherwise
SA} + ES& d

In Eqns. (3.5) to (3.7), we assume sy >s5. Otherwise we should exchange indices
1 and 2.
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4. LOCAL DATA PROCESSING

At each scan, a DSN processor receives azimuth and sound pressure meas-
urements from its own acoustic sensor. This section discusses the processing of
the local measurements based on the Generalized Tracker/Classifier (GTC)
developed in [1]. The general approach is the same as that in Section 2. How-
ever, because of the nature of acoustic sensors, modifications to the general algo-
rithm have to be made. Section 4.1 describes a modified representation of the
tracks. Sections 4.2, 4.3, and 4.4 present the modifications made to hypothesis
formation, evaluation, and track updating. Section 4.5 describes an approach
used to handle wide variations in target dynamics. A summary of these results
can be found in {13].

4.1 TRACK REPRESENTATION

As in [1],[2] or [3] the tracking data at each ncde is represented in terms of
tracks and hypotheses. A track is a collection of measurement indices. For exam-
ple, a track 7 = {(1,2,3),(2,3,4),....} hypothesizes that a target generates measure-
ment 1 at scan 2 at sensor 3, measurement 2 at scan 3 at sensor 4, and so forth.
The lack of measurement may be represented by a triple (0,k,s) for scan & of sen-
sor s or simply excluded from the track. In general, two tracks may be incon-
sistent with each other, e.g., if one track is true the other one must be false. A
consistent collection of tracks is called a data-to-data association hypothesis or
simply a hypothesis. Each track 7 is accompanied by a target state distribution
(TSD) which represents the distribution p(z, |7,Z) of target state z, conditioned
by the track 7 and the accumulated sensor data Z. Since it is difficult for a node
to generate estimates on position and velocity from the measurements of a single
sensor, we distinguish between different kinds of tracks based on the target state
distributions associated with them.

Each target state distribution (TSD) consists of a geolocational TSD
(GTSD) factor(s) and a sound pressure TSD (SPTSD) factor. A TSD factor is
called local if the corresponding distribution is derived from the measurements of

a single sensor, and otherwise global. Thus a GTSD factor is either global or local
while a SPTSD factor is always local. A GTSD or SPTSD factor consists
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generally of multiple gaussian terms with a probabilistic weight being attached to
each term. A track may have only a local GTSD factor. In such a case, a track is
said to be local. Or a track may have a global GTSD factor or both global and
local GTSD factors. Then the track is said to be global.

A local GTSD factor term is a gaussian distribution on the (local) acoustic
azimuth of a target and its derivative, (¢,¢), and possibly higher-order
derivative(s). The purpose of having local GTSD factors is to overcome the
difficulty of initiating tracks locally from acoustic azimuth measurements. As a
local track accumulates acoustic azimuth data, the acoustic azimuth rate (p is
estimated with increasing accuracy as indicated by the decreasing variance matrix
in the local GTSD factor terms. A global GTSD factor term is a gaussian distri-
bution on the global coordinates, i.e., the target position and the velocity in the
north-east coordinate, and possibly their higher-order derivatives. A global GTSD
factor term is generated by fusing two local tracks when different sensors com-
municate

A SPTSD factor tracks the change in the measured sound pressure. Its pur-
pose is: 1) to obtain additional discriminant (particularly from false alarms), 2) to
predict a target leaving the sensor coverage, and 3) to predict the merged acoustic
azimuth measurements when measurement merging is likely. The factor is also
used to estimate the targets’ noisiness. A SPTSD factor term is a gaussian distri-
bution on the (fictitiously noiseless) received sound pressure s, its derivative, and
possibly higher-order derivative(s). The actually measured sound pressure s, is
modeled by

sy =58 + w, (4.1)

where the artificial noise term w, (modeled by independent zero-mean gaussian
r.v.) accounts for scan-to-scan fluctuation of the sound pressure measurements.
Figure 4-1 shows the hierarchy in track representation performed.

The updating of each TSD factor is in parallel to the hypothesis evaluation
(described in Section 4.4). On the other hand, extrapolation of each TSD factor
term is performed by an appropriate dynamic model, i.e., constant-velocity or
constant-acceleration linear models with an appropriate white noise input. For
example, in order to update a local GTSD factor term, a simple set of differential
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equations, Et—(,f)zw and jt—«_v———whzte notse, may be used. Since the acoustic

azimuth dynamics are in fact nonlinear, the intensity of white noise must be
chosen to compensate for such nonlinearity in addition to the target mane :vering
or multiple models (described in Section 4.5) have to be used.

4.2 HYPOTHESIS FORMATION

As described in [1, 2, 3], hypotheses are recursively created, i.e., expanded
and evaluated for each data set from each sensor. To simplify our discussion, we
consider only two-way measurement merging as modeled in Section 3, i.e., only
the possibility of two existing tracks merging together will be considered. For the
sake of efficiency, hypotheses are usually clustered [4, 5] in the processing. In the
following, we discuss hypothesis formation and evaluation within a single cluster.

Consider one sensor scan and a hypothesis X to be expanded. Then, before
expanding this hypothesis by the set of measurements in the data set, it s
expanded into the set of track merging hypotheses, each of which is a partition Km
of X\ such that #(T)<2 for any TcA,,. Here #(A) is the number of members in
a set A. Apparently, this expansion means that we are only considering two-way
merging among existing tracks. Then each track merging hypothesis is expanded
by the set of measurements as in the cases where there is no measurement merg-
ing. Figure 4-2 illustrates this two-step hypothesis expansion; first by track merg-
ing and next by the measurements. In the figure, a hypothesis N having three
tracks is expanded into four track merging hypotheses, K;‘ to K,‘;, each of which
is then expanded by the measurements (shown by shaded triangles in Figure 4-2).
Figure 4-3 shows the expansion of the hypothesis K,ﬁ, by the two measurements in
the current sensor scan.

4.3 HYPOTHESIS EVALUATION

After expanding all the hypotheses X in the old cluster, the resultant collec-
tion of new hypotheses forms an updated cluster. Each new hypothesis A\ has a
unique parent X\ and a unique track merging hypothesis Km, from which X is gen-
erated. Then evaluation of hypotheses, considering the measurement merging pos-
sibility, can be done by replacing X by Xm in the general hypothesis evaluation
formula given in [2] and (6], and then by probabilistically assessing the joint event
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of “two tracks merged and generating a single measurement.”

The results of hypothesis evaluation may be summarized as

Prob. I\ |Z) = C~! Prob. {\ |2}
(“{L (y IT) I’fe TmU{@} and T is assigned measurement y })
(H{L(é’ {71,72}) ITIEE)\ and 7,€\ but they did not merge})

(H{L @n |T€>\ but not assigned any measurement, i.e., 7=T}) (4.2)

where Z is the cumulative data set including the current sensor scan, Zis 2
minus the current sensor scan, and C is the normalizing constant. & in the above
equation is the symbol used to represent ‘‘no measurement” and the L (- |-)’s are
likelihood functions defined below.

In the first parenthesized product on the right hand side of (4.2), L{y |() is
the likelihood of measurement y originating from a target undetected before and
is given by

L(y |&) = Bnr(du)/Bpa (4.3)

where Oy7(-) is the expected density of undetected targets, translated into the
acoustic azimuth space, i.e, [0,27], and By =vp, /27 is the density of the false
alarms over the [0,27] interval, where vy, is the expected number of false alarms
(about from 1 to 3) per scan. Eqn. (4.3) also assumes that the sound pressure
measurement distribution of a target “heard” (detected) for the first time is equal
to that of a false alarm.

When T#@, Ly IT) is the likelihood of measurement y originating from
an existing track T={7} or jointly from two existing tracks T={7,,7,} and is
defined by

Ly(éy |T) Ly(sy |T)
Bra P A(sa)

L(y |T) = (4.4)
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where pSFA is the probability density of the false alarm sound pressure. For sim-
plicity, we assume that the GTSD and SPTSD factors of each track are both
single-termed. The extension to multiple term TSD factor is rather straightfor-
ward and will be explained later. In case #(T)=l, i.e., when there is no merging,
we have

Lo(oy 7)) = 9(éy — 65 5,) (4.5)

where ¢{(& ; 0)%exp(—€2/2)/(\/§77cr) is the probability density of a zero-mean gaus-

sian variable, ¢ is the acoustic azimuth prediction by a local or global GTSD fac-
tor of 7, 5,;‘ is the corresponding innovations variance, and

L(sy 1) = a(sp — 55 5,) (4.6)

with s being the sound pressure prediction by the (local) SPTSD factor of 7 and
&2 being the corr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>